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then p?=p
� � �, and p+=p� � �2, where � is a small

parameter. Here the collinear scale is

�c �M
p
1� z �

p
M�QCD : (6)

Thus � is of order
p
1� z �p

�QCD=M .
There are two types of fundamental objects in SCET

(�elds and Wilson lines) and two separate sectors
(collinear and usoft). In the collinear sector there is a
fermion �eld �n;p, a gluon �eld A�

n;q, and a Wilson line

Wn(x) =

� X
perms

exp

�
�gs 1�P �n �An;q(x)

��
: (7)

Collinear �elds are labeled by a direction n� and the large
components (�n �q; q?). The operator P� projects out the
momentum label. Likewise in the usoft sector there is a
fermion �eld qus, a gluon �eld A�

us, and a Wilson line Y .
Operators are constructed out of these objects such that
they are gauge invariant. Thus, operators with collinear
gluons are built out of the homogeneous (order �) com-
ponent of the collinear �eld strength, �PB�

? � �n�G��
n [12],

B�
? =

�i
gs
W y(P�

? + gs(A
�
n;q)?)W: (8)

We now write down the leading operator. Aside from
B?, we also need the NRQCD heavy quark and antiquark
�elds,  p and ��p, which transform only under usoft
(not collinear) gauge transformations. A CS 3S1 b�b pair
decays into a photon and a colorless jet of gluons. We
must, therefore, include two of the B? �elds in a colorless
con�guration, and the only operator is

O(1; 3S1) = (9)

�y�p�
Æ pTr

�
B�
? �

(1;3S1)
��Æ� ( �P ; �Py)B�

?

	
;

where �Py acts to the left. Momentum conservation forces
the momentum of the jet to be M , so B�

?(
�P + �Py)B�

? =

�MB�
?B

�
?. Introducing P� = �P � �Py, Eq. (9) becomes

O(1; 3S1)(M ) = (10)

�y�p�
Æ pTr

�
B�
? �

(1;3S1)
��Æ� (M;P�)B�

?

	
:

Matching onto QCD at tree level, we obtain

�
(1;3S1)
��Æ� (M; �n � q�) = 4g2seeb

3M
g?��g�Æ ; (11)

for a transverse photon, where �n � q� = �n � q � �n � q0 and
g��? = g�� � (n��n� + n��n�)=2.
The inclusive �! X
 rate can be factored into hard,

jet, and usoft functions at the endpoint. Using the optical
theorem the inclusive spectrum can be written as

d�

dz
= z

M

16�2
ImT (z) ; (12)

FIG. 1: Feynman diagram for the leading order jet function.
Collinear gluons are represented by a spring with a line.

where the forward scattering amplitude T (z) is

T (z) = �i
Z
d4xe�iq�xh�jTJy�(x)J�(0)j�ig��? : (13)

The T indicates time ordering. Matching onto SCET the
forward scattering amplitude can be written as

T (z) =
X
!

H(!; �)Te�(!; z; �) ; (14)

where

Te�(!; z; �) =

Z
d`+J![`

+ +M (1� z)]S(`+) : (15)

After decoupling usoft degrees of freedom [10], the CS jet
function is de�ned as

h0jT Tr�B(0)�
? Æ!;P�B

(0)�
?

�
(x)Tr

�
B
(0)�0

? Æ!0 ;P�B
(0)�0

?

�
(0)j0i

� i

2
(g��

0

? g��
0

? + g��
0

? g��
0

? ) Æ!;!0

Z
d4k

(2�)4
e�ik�xJ!(k

+) ;

(16)

and the CS usoft function is de�ned as

S(`+) =

Z
dx�

4�
e
�i

2
`+x� (17)

�h�jT � y
p
�i��p

�
(x�)

�
�y�p0�i p0

�
(0)j�i

= h�j y
p
�i��pÆ(in � @ � `+)�y�p0�i p0 j�i : (18)

The hard coeÆcient H(!; �) can be calculated perturba-
tively in an expansion in �s(M ). At tree level we obtain

H(!; �) =
4

3

�
4g2seeb
3M

�2

: (19)

At the collinear scale �c we perform an OPE, integrate
out collinear modes and match onto a non-local usoft
operator, Eq. (17), convoluted with a Wilson coeÆcient,

T (z) =

Z
d`+S(`+)HJ [`

+ +M (1� z)] : (20)

To leading order in �s(M
p
1� z), the jet function is

calculated from the Feynman diagram shown in Fig. 1.
Evaluating the diagram gives
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FIG. 2: Diagrams needed to calculate the CS counterterm.

J!(k
+) =

�(�)

8�2

�
4�

�2

�M2 � iÆ

��

(21)

�
Z 1

�1

d�
1

[(k+=M )(1� �2)]�
Æ!;M� ;

and taking the imaginary part we obtain

ImJ!(k
+) =

1

8�
�(k+)

Z 1

�1

d�Æ!;M� : (22)

Combining, we get

ImT (z) =
2M

M2

Z
d`+ S(`+)�[`+ +M (1� z)]

� 8�

3

�
4�s(M )eeb

3M

�2 Z 1

�1

d�; (23)

where the 2M=M2 accounts for the non-relativistic nor-
malization of the � state in the usoft function. This is
precisely in form given in Eq. (20), and it is straightfor-
ward to read o� HJ .
Using Eq. (18), we can integrate over `+, giving

ImT (z) =
16�2

M

�
32��2s(M )e2b

27m2
b

�
(24)

�h�j y
p
�i��p�[in � @ +M (1� z)]�y�p0�i p0 j�i

= �(M� �Mz)
16�2

M
�0; (25)

where we used the results of Ref. [5] for the �nal line.
Plugging into Eq. (12) gives the z ! 1 limit of Eq. (3).
At this point, large logarithms will appear in the jet

function at higher order. This can be avoided by running
operators fromM to �c, which sums logs of 1�z. To run
the CS operator, we calculate the counter term, deter-
mine the anomalous dimension, and use this in the reno-
malization group equations (RGEs). The graphs needed
are shown in Fig. 2. Diagrams involving usoft gluons van-
ish. Feynman rules for the vertex operators are given in

Ref. [11]. We perform our calculation in Feynman gauge,
and obtain a relatively simple result for the one-loop UV-
divergent term

A =
1

�

X
!

O(1; 3S1)(!)�s(�)CA

2�

�
1 (26)

+
M2 + !2

M2

�
M

M + !
ln
M � !

2M
+

M

M � !
ln
M + !

2M

��
:

This depends on the large momentum component of the
gluons. The divergent piece must be canceled by the
counterterm Z3=ZO�1, where ZO is the CS vertex coun-
terterm, and Z3 is the gluon wavefunction counterterm

Z3 = 1 +
�s
4�

1

�

�
CA

5

3
� nf

2

3

�
: (27)

The anomalous dimension is obtained through the
standard method, and the RGE for the coeÆcient is

�
d

d�
�(1;

3S1)(�; !) = 
(�; !)�(1;
3S1)(�; !) : (28)

Solving this equation gives

ln

�
�(1;

3S1)(�; !)

�(1;
3S1)(M;!)

�
= (29)

2

�0

�
CA

�
11

6
+
M2 + !2

M2

�
M

M + !
ln
M � !

2M

+
M

M � !
ln
M + !

2M

��
� nf

3

�
ln

�
�s(�)

�s(M )

�
:

Logarithms of the form ln(�=M ) have been summed into

�(1;
3S1)(�; !), and any logarithms in the operator are of

the form ln(�c=�). If we take � � �c all large logarithms
of the ratio �c=M will sit in the coeÆcient.
We now obtain the resummed rate, by substituting

Eq. (29) into Eq. (23), giving

ImT (z) = 2M

Z
d`+ S(`+)�[`+ +M (1� z)] (30)

�16�

3

�
4�s(M )eeb

3M2

�2 Z 1

0

d�

�
�s(M

p
1� z)

�s(M )

�2
(�)
;

where � = 1=2(� + 1) and


(�) � 2

�0

�
CA

�
11

6
(31)

+
�
�2 + (1� �)2

�� 1

1� �
ln� +

1

�
ln(1� �)

��
� nf

3

�
:

Again integrating over `+ and inserting into Eq. (12), the
resummed CS contribution to the decay rate is,

1

�0

d�resum
dz

= z

Z 1

0

d�

�
�s(M

p
1� z)

�s(M )

�2
(�)
: (32)
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FIG. 3: The inclusive photon spectrum, compared with data
[8]. The theory predictions are described in the text.

We can expand in �s(M ) to obtain an analytic expression
for the next-to-leading logarithmic contribution

1

�0

d�

dz
= z

�
1+

�s
6�

�
CA(2�

2�17)+2nf
�
ln(1�z)

�
: (33)

As z approaches one the O(�s) term becomes of order
one, precisely the behavior observed in Ref. [7]. The
resummed result does not su�er from this problem.
We now combine the di�erent contributions to obtain

a prediction for the photon spectrum. We will marry our
expression for the CS spectrum in the endpoint with the
leading order result by interpolating between the two

1

�0

d�int
dz

=

�
1

�0

d�dirLO
dz

� z

�
+

1

�0

d�resum
dz

: (34)

Before we proceed we need the NRQCD MEs. We can
extract the CS ME from the � leptonic width. The CO
MEs are more diÆcult to determine. NRQCD predicts
that the CO MEs scale as v4 compared to the CS ME.
In Ref. [13] it was argued that an extra factor of 1=2Nc

should be included. We set the 1S0 and
3P0 MEs to zero,

and the 3S1 ME to h�jO8(
3S1)j�i = v4h�jO1(

3S1)j�i,
where we use v2 = 0:08.
The CLEO collaboration measured the number of pho-

tons in inclusive �(1S) radiative decays [8]. The data
does not remove the eÆciency or energy resolution and
is the number of photons in the �ducial region, j cos �j <
0:7. In order to compare our theoretical prediction to the
data, we integrate over the barrel region and convolute
with the eÆciency that was modeled in the CLEO paper.
We do not do a bin-to-bin smearing of our prediction.

In Fig. 3 we compare our prediction to the data.
The error bars on the data are statistical only. The
dashed line is the direct tree-level plus fragmentation re-
sult, while the solid curve includes the resummation in
Eq. (34). For these two curves we use the �s extracted
from these data, �s(M�) = 0:163, which corresponds to
�s(MZ) = 0:110 [8]. The shape of the resummed result is
much closer to the data than the tree-level curve, though
it is not a perfect �t. We also show the Eq. (34) plus
fragmentation result, using the PDG value of �s(MZ), in-
cluding theoretical uncertainties, denoted by the shaded
region. To obtain the darker band, we �rst varied the
choice of mb between 4:7 GeV < mb < 4:9 GeV and
the value of �s within the errors given in the PDG,
�s(MZ) = 0:1172(20) [14]. Varying mb and �s mod-
i�es the extraction of the CS ME from 3:31 GeV3 to
3:56 GeV3. We also varied the collinear scale, �c from
M
p
(1� z)=2 < �c < M

p
2(1� z). Finally, the lighter

band also includes the variation, within the errors, of the
parameters for the quark to photon fragmentation func-
tion extracted by ALEPH [15]. The low z prediction is
dominated by the quark to photon fragmentation coming
from the CO 3S1 channel. We did not assign any error
to the CO 3S1 ME. Since it is unknown, there is a very
large uncertainty in the lower part of the prediction that
we decided not to show. Note that the CO 1S0 and 3P0
contribution increases the theoretical prediction at the
upper endpoint [11]. It is thus clear the data favors a
very small value for the CO 1S0 and 3P0 MEs. This is
why we set these to zero in our analysis. Negative values
for these MEs are possible, and would give a bit better
�t to the shape.
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